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I report large-scale Monte Carlo studies of a one-dimensional height-restricted stochastic sandpile using the
quasistationary simulation method. Results for systems of up to 50 000 sites yield estimates for critical expo-
nents that differ significantly from those obtained using smaller systems, but are consistent with recent pre-
dictions derived from a Langevin equation for stochastic sandpiles �Ramasco et al., Phys. Rev. E 69,
045105�R� �2004��. This suggests that apparent violations of universality in one-dimensional sandpiles are due
to strong corrections to scaling and finite-size effects
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I. INTRODUCTION

Sandpile models are the prime example of self-organized
criticality �SOC� �1,2�, a control mechanism that forces a
system with an absorbing-state phase transition to its critical
point �3,4�, leading to scale invariance in the apparent ab-
sence of parameters �5�. SOC in a slowly driven sandpile
corresponds to an absorbing-state phase transition in a model
having the same local dynamics, but a fixed number of par-
ticles �3,6–10�. The latter class of models is usually desig-
nated as fixed-energy sandpiles �FES� or conserved sand-
piles. Continuous absorbing-state phase transitions
characterized by a nonconserved order parameter �activity
density� coupled to a conserved field that does not diffuse in
the absence of activity, are expected to define a universality
class �11�. This class, referred to as CDP �that is, a model-C
version, in the sense of Halperin and Hohenberg �12�, of
directed percolation, or DP�, appears to be distinct from that
of directed percolation �13�.

In recent years considerable progress has been made in
characterizing the critical properties of conserved stochastic
sandpiles, although no complete, reliable theory is yet at
hand. As is often the case in critical phenomena, theoretical
understanding of scaling and universality rests on the analy-
sis of a continuum field theory or Langevin equation �a non-
linear stochastic partial differential equation� that reproduces
the phase diagram and captures the fundamental symmetries
and conservation laws of the system. Important steps in this
direction are the recent numerical studies of a Langevin
equation �13,14� for CDP. �The latter appears to incorporate
the essential aspects of stochastic sandpiles.� The critical ex-
ponent values reported in Ref. �13� are in good agreement
with simulations of conserved lattice gas �CLG� models
�19,20�, which exhibit the same symmetries and conservation
laws as stochastic sandpiles.

The Langevin equation exponents are also consistent with
the best available estimates for stochastic sandpiles in two
dimensions �13�, with the exception of the exponent � gov-
erning the initial decay of the order parameter. �The discrep-

ancy regarding � likely reflects strong corrections to short-
time scaling in sandpiles, due to long memory effects
associated with initial density fluctuations �15�.� Pending a
better understanding of this question, it appears that stochas-
tic sandpiles are consistent with CDP in two dimensions. In
the one-dimensional case, however, there is a significant dis-
crepancy between the Langevin equation results and those
for sandpile models.

Specifically, analysis of the Langevin equation for CDP
yields, in one dimension, the order-parameter critical expo-
nent value �=0.28�2�, while previous studies �15–18� of sto-
chastic sandpiles furnish values near 0.40 for this exponent.
There are also smaller discrepancies for other critical expo-
nents. If this discrepancy were to persist, one would be
forced to conclude that the proposed Langevin equation
misses some essential aspect of sandpiles �at least in the
one-dimensional case�, or that not all models with the same
symmetries and conserved quantities belong to the same uni-
versality class. In an effort to clarify the situation, I apply the
recently devised quasistationary simulation method �21–23�
to the restricted-height sandpile introduced in Ref. �16�.

The balance of this paper is organized as follows. In Sec.
II we define the model and summarize the simulation
method. Numerical results are analyzed in Sec. III, and Sec.
IV discusses the findings in the context of universality.

II. MODEL

I study the “independent” version of the model introduced
in Ref. �16�. The system, a continuous-time, restricted-height
version of Manna’s stochastic sandpile �24�, is defined on a
ring of L sites. The configuration is specified by the number
of particles, zi=0,1, or 2, at each site i. Sites with zi=2 are
active, and have a toppling rate of unity. The continuous-
time Markovian dynamics consists of a series of toppling
events at individual sites. When site i topples, two particles
attempt to move randomly �and independently� to either i
−1 or i+1. �The two particles may both try to jump to the
same neighbor.� Each particle transfer is accepted so long as
it does not lead to a site having more than two particles. �If
the target site is already doubly occupied the particle does
not move. Thus an attempt to send two particles from site j*Electronic address: dickman@fisica.ufmg.br
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to site k, with zk=1, results in zk=2 and zj =1.� The next site
to topple is chosen at random from a list of active sites,
which is updated following each event. The time increment
associated with each toppling is �t=1/NA, where NA is the
number of active sites just prior to the event.

Any configuration devoid of doubly occupied sites is ab-
sorbing. Although absorbing configurations exist for particle
densities p=N /L�1, the critical value pc �above which ac-
tivity continues indefinitely� appears to be strictly less than
unity. In Ref. �16� the model was studied in the site and pair
mean-field approximation �which yield a continuous phase
transition at pc=0.5 and 0.75, respectively, in one dimen-
sion�, and via Monte Carlo simulation using system sizes of
up to 5000 sites. The latter yield the estimates pc
=0.929 65�3�, � /��=0.247�2�, z=�� /��=1.45�3�, and �
=0.412�4�. A similar value, �=0.42�1�, was obtained in Ref.
�17� using a series of cluster approximations �of up to 11
sites�, combined with Suzuki’s coherent anomaly analysis
�25�.

The studies reported here employ the quasistationary �QS�
simulation method, which, due to increased efficiency in the
critical region, permits a tenfold increase in the system size
as compared to Ref. �16�. The QS method, described in detail
in Ref. �21�, provides a just sampling of asymptotic �long-
time� properties, conditioned on survival. In practice this is
accomplished by maintaining �and gradually updating� a set
of configurations visited during the evolution; when a tran-
sition to the absorbing state is imminent the system is instead
placed in one of the saved configurations. Otherwise the evo-
lution is exactly that of a “standard” simulation algorithm
such as used in Ref. �16�.

III. SIMULATION RESULTS

I performed two sets of studies using the QS method. The
first is used to determine the QS order parameter �defined as
the faction � of active sites�, the moment ratio m= ��2� /�2,
and the mean lifetime � of the quasistationary state, in the
immediate vicinity of the critical point pc, for system sizes
L=1000, 2000, 5000, 10 000, 20 000, and 50 000. �The QS
lifetime is taken as the mean number of time steps between
successive attempts to visit the absorbing state.� A second set
of simulations is used to study the supercritical regime �p
	 pc� for system sizes L=10 000, 20 000, and 50 000. �For p
substantially larger than pc, the lifetime is much larger than
the simulation time, so that the system never visits the ab-
sorbing state, and the QS method becomes identical to a
standard simulation.�

Each realization of the process is run for 109 time steps;
averages are taken in the QS regime, which necessitates dis-
carding an initial transient that ranges from 106 time steps
�for L=1000� to 108 time steps �for L=50 000�. The number
of saved configurations ranges from 1000 �for L=1000� to
400 �for L=50 000�. The list updating probability prep ranges
from 10−3 �for L=1000� to 5
10−6 �for L=50 000�. During
the initial relaxation period prep is increased by a factor of 10
to erase the memory of the initial configuration.

I first discuss the studies focusing on the critical region.
As in Ref. �16�, I study for each system size, a series of

particle number values N, chosen so that p=N /L lies imme-
diately above or below pc. Since the particle density can only
be varied in steps of 1 /L, estimates for properties at interme-
diate values of p are obtained via interpolation. The results of
the QS simulations were found to agree, to within uncer-
tainty, with the corresponding results of conventional simu-
lations �16�, for L=1000, 2000, and 5000. The criterion for
criticality is power-law dependence of � and � on system
size, i.e., the familiar relations ��L−�/�� and ��Lz, and
constancy of the moment ratio m with L. The most sensitive
indicator turns out to be the order parameter �. Using the
data for system sizes 5000–50 000, I rule out p values that
yield a statistically significant curvature of the graph of ln �
versus ln L. This results in the estimate pc=0.929 780�7�.
�For the remainder of the analysis pc is fixed at this value and
is no longer available as an adjustable parameter.� The asso-
ciated exponent is � /��=0.213�6�, where the uncertainty
represents a contribution �±0.005� due to the uncertainty in
pc and a small additional uncertainty in the linear fit to the
data. Simulation results for � as a function of L, for various
densities near pc, are shown in Fig. 1; curvature of the plots
for off-critical values is evident in the inset.

The data for the QS lifetime � furnish a similar but some-
what less precise estimate, pc=0.929 777�17�. Fitting the
data for L=5000–50 000, using the pc interval obtained from
the analysis of �, I find z=1.50�4�. The moment ratio m is
also useful for setting limits on pc. As shown in Fig. 2, this
quantity appears to grow with system size for p� pc and vice
versa; we may rule out the values 0.929 76 and 0.929 80 on
this basis. The moment ratio data yield mc=1.142�8�. The
main contribution to the uncertainties in z and m is again due
to the uncertainty in pc.

The present estimate for pc is significantly greater than
that found in Ref. �16�, although the difference amounts to

FIG. 1. Stationary order parameter versus system size for par-
ticle densities �bottom to top� p=0.929 77, 0.929 78, and 0.929 79.
Inset, ln L0.213� versus ln L for the same set of particle densities.
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about 0.01%. The results for the exponent z are consistent,
but the present study yields a substantially �16%� lower es-
timate for � /�� than reported previously. The present result
for mc is also substantially lower than the value 1.1596�4�
reported in Ref. �16�. These differences highlight the strong
finite-size corrections affecting stochastic sandpiles.

Next the results for the order parameter in the supercriti-
cal regime are analyzed. Figure 3 shows that the data for
system sizes 10 000, 20 000, and 50 000 are well converged
for �= p− pc�10−3, that is, finite-size effects are only
present nearer the critical point. Evidently, the data are not
consistent with a simple power law of the form ����. In-
deed this departure from the familiar behavior of the order
parameter was already noted �with data for smaller systems�
in Ref. �16�. In the latter work the power law was “restored”
by introducing a size-dependent critical density pc�L�	 pc,

−const/L1/��, leading to a series of estimates for the critical
exponent � that increase systematically with L, apparently
converging to �=0.412�4�. With the present data, which are
converged over a broader range of � values, I find that shift-
ing the critical value does not lead to an apparent power law.

One is therefore left to conclude that either the order pa-
rameter does not obey power-law scaling, or that there are
unusually strong corrections to scaling. Including a correc-
tion to scaling term, one has

� � ���1 + A���� �1�

so that there are now three adjustable parameters, �, ��, and
A. Even with a reasonably large number of data points �18
for L=10 000�, this induces a huge range of variation in the
exponent �. Decent fits can be obtained with values as low
as �=0.1 and as large as 0.3.

To resolve this difficulty I return to the data in the imme-
diate vicinity of pc. These data can be used to determine the
correlation length exponent �� in the following manner.
Finite-size scaling implies that for p	 pc, the moment ratio
obeys the relation

m��,L� 	 Fm�L1/���� , �2�

where Fm is a scaling function. This implies that


 �m

�p



pc

� L1/��. �3�

Moreover, the finite-size expression �=L−�/��F��L1/���� im-
plies that


 � ln �

�p



pc

� L1/��, �4�

and similarly for the derivative of ln � at the critical point.
The derivatives are evaluated numerically as follows. For
each value of L studied, data for five values of p clustered
around pc are fit with a cubic polynomial; the derivative of
the polynomial is then evaluated at pc. The resulting deriva-
tives are plotted in Fig. 4; clean power laws are observed,
leading to ��=1.362�7�, 1.323�14�, and 1.372�21�, using the
data for ln �, m, and ln �, respectively. Pooling these results
yields the estimate ��=1.355�18�. Then, using the values for

FIG. 2. Moment ratio m versus system size for particle densities
�top to bottom� p=0.929 76, 0.929 78, and 0.929 80.

FIG. 3. �Color online� Stationary order parameter versus
�= p− pc for system sizes �top to bottom� L=104, 2
104, and
5
104.

FIG. 4. �Color online� Derivatives of �lower to upper� ln �, ln �,
and m with respect to particle density, evaluated at pc, versus sys-
tem size. The slope of the straight line is 0.734.
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� /�� and z reported above, I find �=0.289�12� and ��

=2.03�8�.
Using this value for �, the data for the order parameter in

the supercritical regime can be fit using the correction to
scaling form, Eq. �1�, with parameters ��=0.446 and
A=1.3505. For �=0.1, the correction term A��� in Eq. �1� is
0.48, showing that there are sizeable deviations from a pure
power law. It is usual to verify scaling by seeking a
data collapse, plotting �*=L�/��� versus �*=L1/���. For
�	0.001 the order parameter does not follow a pure power
law and so the data cannot collapse. It is nevertheless of
interest to construct such a scaling plot �Fig. 5�. Although the
data do not collapse over most of the range, they do collapse
in the interval −1���1. A linear fit to the data in this
interval yields a slope of 0.27�1�. This is close to the � value
obtained from the finite-size scaling analysis, suggesting that
simple scaling is restricted to a narrow interval very near the
critical point.

IV. DISCUSSION

A study of the one-dimensional restricted-height stochas-
tic sandpile using quasistationary simulations permits study

of systems an order of magnitude larger than previously
studied, and yields critical properties different from those
obtained previously. In the case of the critical density, the
small change �about 0.01%� from the previous estimate may
be attributed to finite-size effects, which are known to affect
sandpile models strongly.

Of greater concern are critical exponent values, since they
define the universality class of the model. Since there is ev-
ery reason �based on symmetry considerations� to expect the
restricted sandpile to belong to the same universality class as
the unrestricted version �indeed, this seems well established
in two dimensions �16��, Table I compares critical exponent
values from various studies of stochastic sandpiles, CDP, and
the conserved threshold transfer process �CTTP�, also ex-
pected to belong to the same class.

The overall conclusion from Table I is that studies using
smaller lattices yield values in the range 0.38–0.42 for the
exponent � �Ref. �18� is however an exception�, and that the
large-scale simulation of Ref. �20�, the numerical study of
the CDP field theory �13� and the present work yield a con-
sistent set of results, with �	0.29. �A similar value has been
found for a modified conserved lattice gas model �27�.� Al-
though the system size �4000 sites� used in the field theory
simulations is not large, one should note that each site in
such a simulation may represent a region comprising many
lattice sites in the original model. Compared with the earlier
sandpile simulations, the distinctive feature of the present
work may not be system size, but the fact that here the ex-
ponent � is determined via finite-size scaling at the critical
point, rather than from the usual analysis of the order param-
eter in the supercritical regime. Indeed, it is easy to see from
Fig. 3 that data for �= p− pc in the range 10−3–10−1 will
yield larger estimates for �. �The same observation applies to
the coherent anomaly method �CAM� analysis �17�, which
essentially probes the shape of the function ���� at some
distance from the critical point �=0.� I observe a simple
power-law behavior, and data collapse for various lattice
sizes, only in a restricted range of the scaling variable
�*=L1/���.

Also included in Table I are exponent values for one-
dimensional directed percolation �28�. The values obtained in
Refs. �13,20�, as well as in the present work, are not very
different from those of DP. A clear difference from DP scal-
ing was however demonstrated in Ref. �14�, where the initial

FIG. 5. �Color online� Scaled density �* versus scaled distance
from critical point �*, as defined in text. System sizes, 104 �open
squares�; 2
104 �filled squares�; 5
104 �diamonds�.

TABLE I. Summary of exponent values for one-dimensional models in the CDP universality class. Lmax

denotes the largest system size studied. Abbreviations: CAM, coherent anomaly method; FT, field theory.

Model Lmax � � /�� z

Manna �15� 10000 0.42�2� 0.24�1� 1.66�7�
Manna �26� 8192 0.28�3� 1.39�11�
CTTP �18� 131072 0.38�2� 0.24�1� 1.66�7�
Rest. Manna �16� 5000 0.416�4� 0.246�5� 1.50�9�
Rest. Manna CAM �17� 0.41�1�
CDP �20� 4.2
106 0.29�2� 1.55�3�
CDP FT �13� 4000 0.28�2� 0.214�8� 1.47�4�
Rest. Manna �present work� 50000 0.289�12� 0.213�6� 1.50�4�
DP �28� 0.2765 0.2521 1.5807
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decay exponent for one-dimensional CDP is found to be
�=0.125�2�, as opposed to 0.1595�1� for DP. The rather sub-
stantial differences found here in � /��, and in the moment
ratio m �1.142�8� for the restricted sandpile compared with
1.1736�1� for DP �21��, lend further support to the conclusion
that the CDP/stochastic sandpile universality class is distinct
from that of directed percolation, as is evidently the case in
two dimensions. �This is despite the result in Ref. �29�, that
when suitably modified to include sticky grains, sandpiles
fall generically in the DP class.�

In summary, I have applied the quasistationary simulation
method to a one-dimensional restricted-height stochastic

sandpile, and the obtained results are consistent with recent
studies of CDP. This supports the assertion that the latter
class includes stochastic sandpiles, as would be expected on
the basis of symmetry and conservation laws.
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